
膜分离技术是一种新型高效的分离技术,是对非均相体系中不同组分进行分离、纯化与浓缩的一门新兴的边缘交叉学科。它具有过程不发生相变及副反应、无二次污染、分离效率高、操作条件温和、能耗低等优点,是缓解资源短缺、能源危机和治理环境污染的重要措施,因而得到 各国普遍重视,并在海水淡化、化工、印染、环保、食品、生化过程等领域得到了广泛应用。
目前膜分离技术被公认为20世纪末至21世纪中期较有发展前途的高科技之一。在短短的几十年里膜技术迅速发展,受到 的瞩目。扩散定理、膜的渗析现象、渗透压原理、膜电势等一系列研究为膜的发展打下了坚实的理论基础。相关科学技术的突飞猛进也使得膜的实际应用成为可能。
1 膜分离过程与膜分离技术
1.1 膜分离过程
膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。不同的膜过程使用不同的膜,推动力也不同。
目前已经工业化应用的膜分离过程有微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、渗析(D)、电渗析(ED)、气体分离(GS)、渗透汽化(PV)、乳化液膜(ELM)、膜生物反应器(MBR)等。
1.2 膜分离技术
超滤(UF)、纳滤(NF)、乳化液膜(ELM)、膜生物反应器(MBR)这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。气体分离和渗透汽化是正在发展中的技术。其中气体分离相对较为成熟一些。目前已有工业规模的气体分离体系是:空气中氧和氮的分离。渗透汽化是这些膜过程中 有相变的过程,在组件和过程设计中均有特殊的地方。它主要用于有机物/水,水/有机物,有机物/有机物分离,是较有希望取代某些高能耗的精馏技术的膜过程。20世纪80年代中期进入工业化应用阶段。
2 膜分离技术的水处理应用
2.1 超滤膜分离技术在废水处理中的应用
2.1.1 超滤膜简介
超滤(UF)是一种压力驱动的膜分离过程,是根据分子的大小和形态而分离的筛选机理进行分离的。自20世纪60年代以来,超滤很快从实验规模发展成为重要的工业单元操作技术,它已广泛用于食品、医药、工业废水处理,高纯水制备及生物技术工业。在工业废水处理方面应用的较普遍的是电泳涂漆过程,城市污水处理及其他工业废水处理领域都是超滤未来的发展方向。
2.1.2 超滤膜在废水处理中的应用
机械行业工件的润滑,清洗和石化行业的炼制及加工等会产生含油废水,其油一般为漂浮油、分散油和乳化油三种形式存在。其中乳化油的分离难度较大,用电解或化学法破乳使油粒凝聚的费用较高,而超滤就不需要破乳直接可将油水分离,特别适用于高浓度乳化油的处理和回收。超滤处理乳化油废水时,界面活性剂大部分可透过,而超滤膜对油粒子完全阻止,随浓度增加油粒子粗粒化成为漂浮油浮于液面上,再用撇油装置即可撤除。陆晓千等用超滤膜技术处理清洗车床、设备等含油污水,颜色为乳白色,含油(1000~5000)mg/L,COD浓度高达(10000~50000)mg/L,经超滤膜处理后,颜色透明。含油低于10mg/L,COD(1700~5000)mg/L,除油率99%。
2.2 纳滤膜技术在废水处理中的应用
2.2.1 纳滤膜的简介
纳滤膜(NF)又称疏松型反渗透膜,它是介于反渗透与超滤之间的一种膜分离技术。但纳滤膜多数为荷电膜,其对无机盐的分离行为不仅受到化学势梯度控制,同时也受到电势梯度的影响,其表面由一层非对称性结构的高分子与微孔支撑体结合而成,以压力差为推动力,对水溶液中低分子量的有机溶质截留,而盐类组分则部分或全部透过,从而使有机溶质得到同步浓缩和脱盐的目的。
2.2.2 纳滤膜在废水处理中的应用
2.2.2.1 含重金属废水的处理
在金属加工和合金生产废水中,含有浓度相当高重金属离子。将这些重金属离子生成氧化物沉淀除去是处理含重金属的废水一般的措施。采用纳滤膜技术,不仅可以回收90%以上的废水,使之纯化,而且同时使重金属离子含量浓缩10倍左右,浓缩后的重金属具有回收利用的价值。如果条件控制适当,纳滤膜还可以分离溶液中的不同金属。
2.2.2.2 化学工业废水的处理
处理化学工业废水的常用方法是浓缩后焚烧或曝气。而且浓缩时需要除去废水中的盐分,因为要是浓缩成高盐度的废水,这种废水会对焚烧炉或暖气装置产生更大腐蚀。另外,废水中含有许多生物不能降解的大分子有机物。这些问题只有用纳滤膜才能有效解决。纳滤膜在浓缩水中有机成分的同时,让盐分透过,从而达到分级分别处理。经浓缩后的已脱盐废水可以去曝气,而透过液则可经生化处理成无害的物质排放。
2.3 乳化液膜技术在废水处理中的应用
2.3.1 液膜及乳化液膜简介
液膜技术是60年代中期由美国埃克森研究与工程公司的黎念之博士提出的一种膜分离方法,直到1986年奥地利的Marr等科学家采用液膜法,从粘胶废液中回收锌获得了成功,液膜分离技术才进入了实际应用阶段。液膜主要由膜溶剂(水或有机溶剂),表面活性剂(乳化剂)和添加剂组成,按其构型和操作方式的不同,可分为乳状液膜和支撑液膜,其中乳状液膜更为常用。乳状液膜可看成为一种。“水/油/水”型(W/O/W)或“油/水/油”型(O/W/O)的双重乳状液高分散体系,将两种互不相溶的液相通过高速搅拌或其它方法(如超声波法、喷管法等)制成乳状液,然后将其分散到第三种液相(连续相)中,就形成了乳状液膜体系。乳状液膜表面积大,传质速度快,可以有目的地控制其选择性。
乳状液膜处理废水的过程分3步进行:
(1)制乳。对不同废水,需选择不同的膜溶剂、表面活性剂和内保相搅拌后制成的W/O乳液;乳化型液膜的制备较为简单,直接将优选的膜配方材料加入制乳设备中即可。制乳设备的工作原理有机械搅拌、胶体磨、超声波等。
(2)传质。将W/O乳液分散到待处理废水中,形成W/O/W乳液。废水中的待分离组分,通过选择性渗透、化学反应、萃取和吸附等作用进入内包相,与内包相中的特定组分发生反应,从而富集于内包相。
(3)破乳。W/O/W乳液经一段时间传质后,静置,分层,水层为出水,油层为油相与内包相的乳状液,利用电场或机械力破坏油层乳状液,使油相与内包相分开,油相循环使用,富集了被分离物的内包相进行回收或处理后废弃。
破乳的目的是为了回收使用过的乳液内相和有机相。破乳效果的优良与否,直接关系到液膜技术的经济可行性,因此此环节十分重要。破乳方法分为化学破乳法和物理破乳法。通过调节pH值或投加化学破乳剂使液膜体系失稳的方法叫化学破乳法。通过加热、离心分离以及高压电场的静电引力来使液膜体系失稳的方法叫物理破乳法。
2.3.2 乳化液膜在废水处理中的应用
2.3.2.1 分离废水中的有机物、无机酸
美国科罗拉多矿业大学的wang研究了用液膜法去除水溶液中的多种有机酸成分。如两种有机酸溶质体系(间甲酚、安息香酚、酚/苯基乙酸)和3种有机溶质体系(酚/安息香酚/苯基乙酸)。以总浓度为0.012mg/L的间甲酚/安息香酚溶液的分离实验为例,随膜相与外水相接触时间延长,外水相中间甲酚/安息香酚不断减少直至平衡,安息香酚可去除95%左右,间甲酚剩余较多。
2.3.2.2 去除重金属离子
奥地利Graz工业大学的Marr等人用乳状液液膜分离技术,对去除骨胶废水中的Zn2+、Cu2+、Cd2+、Pb2+、Cr3+、Ni2+等重金属离子做了大量的实验。表明除Ni2+外,其它金属离子的去除率均高于99%。
3 结语
总之,膜技术在水处理方面有着广泛的用途,城市污水回用对缓解城市供水不足,节省珍贵的水资源,减轻水污染和改善水环境的作用是非常显著的,大量的实践证明了污水回用的可行性和经济性,随着人们环境意识的增强和生活水平的提高,对污水回用要求也会越来越。由于膜技术的特点,技术的不断进步以及处理成本的不断下降,膜技术在污水回用领域将有更大用武之地,但由于工业废水往往含有酸、碱、油等物质,处理条件较苛刻。因此,处理废水使用的膜必须具有较好的材料性能,从而保持其良好的分离性能和较长的使用寿命。从这方面来看,开发抗污染等性能优良的过滤膜具有重要的战略意义。同时,对膜污染机理、膜污染模型、膜污染控制技术和与工程化配套的预处理技术研究也是目前重要的研究方向。
水资源日益短缺和对水重复利用的迫切要求,为膜分离技术在废水处理及回用领域的应用提供了机遇。可以预见,由于膜分离技术的自身优势,在上述领域中将有更广阔的发展前景。